Furan-2(3H)- and -2(5H)-ones. P art 7. ${ }^{1}$ P hotochemical behaviour of tetrahydro- and hexahydro-isobenzofuran-1-one systems: a mechanistic and exploratory study

O samu M uraoka,* G enzoh Tanabe and Y uko I gaki
Faculty of P harmaceutical Sciences, K inki U niversity, K owakae 3-4-1, H igashi-O saka, Osaka 577, Japan

Abstract

The photoreactivity of two variations of the di- π-methane system involving the tetrahydro- and hexahydro-isobenzofuran structures 10 and 11 have been examined and compared with those of β apolignans 1 . The former, 9 -phenyl-1,3,4,5,6,7,8,9-octahydronaphtho[2,3-c]furan-1-one 10a and 7-phenyl-1,3,4,7-tetrahydroisobenzofuran-1-one 10b, gave primarily the di- π-methane rearrangement products 18 a and 18b, respectively, while the hexahydro substrate, 7-phenyl-1,3,4,5,6,7-hexahydroisobenzofuran-1-one 11, afforded mainly the photoreduced products 21-24. This difference in chemoselectivity is explained in terms of the variant configuration of the phenyl group, an axially orientated one migrating most effectively. A new pathway for the reaction leading to the cyclopropano product 18a or 18b, by way of another cyclopropano derivative 19a or 19b, respectively, is described.

Introduction

It is well known that photoirradiation of molecules having a di-π-methane moiety, i.e. having two π-systems bound to a single sp^{3} carbon, causes rearrangement to give π-substituted cyclopropanes. The reaction has been termed the di- π-methane rearrangement and has emerged as one of the most general of the excited-state molecular rearrangement processes. ${ }^{2}$

In a previous paper, we reported the regiospecific di- π methane rearrangement of β-apolignans 1 into the corresponding tetrahydrocyclopropa[a]indenes 2 and showed that the rearrangement is common among β-apolignans irrespective of their ring substituents; we also showed that only the phenyl substituent migrates among the three possible di- π-methane systems found in the β-apolignans $1 .{ }^{3}$ In order to establish the origin of the regioselectivity in the photolysis, we initially investigated the photoreactivity of 3,4-dibenzyl-2,5-dihydro-furan-2-one 3, a system lacking the stereochemical rigidity of compounds 1, where reverse selectivity of migration was observed to afford a cyclopropano lactone 4 as the sole rearrangement product. ${ }^{4}$ In a further study using the monobenzyl analogues, 3-benzyl-2,5-dihydrofuran-2-ones 5, characteristic photoarylation leading to the corresponding tetrahydroindenofuranones $6(\mathrm{R}=\mathrm{Me}$, $\mathrm{Et}, \mathrm{Pr}, \mathrm{c}-\mathrm{Hex})$ was found to occur with the introduction of substituents on the 'central methane' carbon; in this work only the phenyl substituted substrate 5 ($\mathrm{R}=\mathrm{Ph}$) resulted in a di- π-methane rearrangement to afford a cyclopropano lactone $7(\mathrm{R}=\mathrm{Ph})$ in moderate yield. ${ }^{5}$ On the other hand, upon irradiation of the 4-benzyl counterparts, 4-benzyl-2,5-dihydrofuran-2-ones 8, characteristic acceleration of the di- π-methane rearrangement was observed upon introduction of any alkyl substituents at the 'central methane' carbon to afford the corresponding cyclopropano lactones 9 in good yields. ${ }^{1,6}$

These observations suggested that the stereochemical rigidity of β-apolignans 1 could be responsible for the efficient regioselective photorearrangement leading to compounds 2. In addition, formation of the cyclopropano lactone $7(\mathrm{R}=\mathrm{Ph})$ upon irradiation of the phenyl-substituted 3-benzyl system $\mathbf{5}$ ($\mathrm{R}=\mathrm{Ph}$) also implied that the stereochemistry established only upon introduction of the phenyl moiety at the 'central methane' carbon had fulfilled any stereoelectronic requirements for the rearrangement in the aryl-butenolidyl-methane system.

With the aim of gaining further insight into the nature of the regioselective photorearrangement of compounds $\mathbf{1}$, we have investigated in the present study the photochemistry of 9 -phen-yl-1,3,4,5,6,7,8,9-octahydronaphtho[2,3-c]furan-1-one 10a, 7-phenyl-1,3,4,7-tetrahydroisobenzofuran-1-one 10b and its dihydro derivative, 7-phenyl-1,3,4,5,6,7-hexahydroisobenzofuran-1-one 11, from a stereochemical point of view. Of these three substrates, the first two, 10a and 10b, would have similar stereochemistry to that of the β-apolignans 1 as a result of their 1,4 diene structure, while the last, 11, would not (Scheme 1).

Results

Synthesis of the photochemical substrates 10a, 10b and 11
The Diels-Alder reaction of (E)-1-benzylidene-2-methylenecyclohexane $12 a^{7}$ with dimethyl acetylenedicarboxylate (D M AD) gave the desired adduct, dimethyl 1-phenyl-1, $4,5,6$, 7,8-hexahydronaphthalene-2,3-dicarboxylate 13a (91\%). Treatment of this with perchloric acid in formic acid ${ }^{8}$ followed by sodium boranuide reduction of the resulting anhydride, 4-phenyl-1,3,4,5,6,7,8,9-octahydronaphtho[2,3-c]furan-1,3-dione 14a, gave a mixture of the desired lactone 10a and its regioisomer, 4-phenyl-1,3,4,5,6,7,8,9-octahydronaphtho[2,3-c]furan1 -one 15a, in 64 and 11% overall yields, respectively from compound 13a. The reduction of unsymmetrically substituted succinic anhydride by simple metal hydrides (NaBH_{4} or LiAlH_{4}) has been reported to occur at the hindered position. ${ }^{9}$ Thus, it is interesting to note that in the reduction of the anhydride 14a, the regioselectivity was reversed to afford primarily compound 10a, the less hindered site being reduced selectively.
Both lactones 10a and 15a displayed similar spectroscopic properties, showing IR absorption at ca. 1660, 1698 and 1755 cm^{-1} consistent with the dienone system, and ${ }^{1}$ H NM R signals characteristic of homoallylic coupling as a result of the cyclohexa-1,4-diene structure ($\mathrm{J}_{4,9} 5.0 \mathrm{~Hz}$). In the ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectrum of the minor lactone 15a, signals arising from the lactonic methylene moiety, which appeared as an A B quartet at $\delta_{\mathrm{H}} 4.35$ and 4.64 , shifted upfield in comparison with those of its regioisomer 10a ($\delta_{\mathbf{H}} 4.71$ and 4.77) due to the anisotropy of the phenyl substituent.
The bicyclic analogue 10b and its regioisomer, 4-phenyl-1,3,4,7-tetrahydroisobenzofuran-1-one 15b, were prepared in a

10a

10b

12

14

10

16b

15

17b

Scheme 2 Reagents and conditions: i, DMAD, $150^{\circ} \mathrm{C}$ or benzene, reflux; ii, $\mathrm{HClO}_{4}, \mathrm{HCO}_{2} \mathrm{H}$, reflux; iii, NaBH_{4}; iv, $\mathrm{Pd}-\mathrm{C}$, xylene, reflux; v, $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$

1,3,5,6,7,8-hexahydronaphtho[2,3-c]furan-1-one 16a, in 8, 4 and 9% yields, respectively, was also detected.
U pon irradiation of the bicyclic analogue $10 b$ under the same conditions, phenyl migration to the α-ketonic position also predominated to give a cyclopropano lactone, 3a-phenyl-3,3a,3b,6-tetrahydro-1H-cyclopenta[1,3]cyclopropa[1,2-c]furan-3-one 18b, in 43% yield. Its regioisomer, 3a-phenyl-1,1a,3a,4-tetrahydro-6H -cyclopropa[1,5]cyclopenta[1,2-c]furan-4-one 19b, and the dehydro derivative $\mathbf{1 6 b}$ were also produced in 4 and 5% yields, respectively. No rearrangement product of the type 20a was obtained in this irradiation.
Upon acetone-sensitized irradiation, reactions proceeded more efficiently with both reactants 10a and 10b, affording the same respective photoproducts in a shorter reaction time. The results of the irradiations are summarized in Tables 1 and 2 and in Scheme 3.
The minor rearrangement products 19a and 19b rearranged into their isomeric cyclopropano lactones 18a and 18b, respectively, when irradiated under the acetone-sensitized conditions. M eanwhile, compounds 18a and 18b were unaffected by the irradiation, and no reverse transformations leading to 19a and 19b, respectively, were detected.
Photolysis of the hexahydroisobenzofuranone $\mathbf{1 1}$ proceeded in a completely different manner from that of its dehydro counterpart 10b. U pon both direct and acetone-sensitized irradiations, photoreduction proceeded predominantly to give four stereoisomeric octahydroisobenzofuranones, 7-phenyl-1,3,3a,4, 5,6,7,7a-octahydroisobenzofuran-1-one 21, 22, 23 and 24, in $52-54 \%$ combined yields. Formation of a trace amount of a double-bond isomerization product, 7-phenyl-1,3,3a,4,5,6-hexa-hydroisobenzofuran-1-one 25, and a di- π-methane rearrangement product, 3a-phenyl-3,3a,3b,4,5,6-hexahydro-1H-cyclo-penta[1,3]cyclopropa[1,2-c]furan-3-one 26, was also detected. Upon irradiation in methanol, formation of the solvent adducts, 7a-hydroxymethyl-7-phenyl-1,3,3a,4,5,6,7,7a-octa-hydroisobenzofuran-1-one 27, 28 and 29, was detected as additional photoproducts. The product distributions are summarized in Scheme 4.

10a

19a

20a

30

Table 1

		Reaction time (t/h)				

Table 2

		Products (isolated yield \%)			
Solvent	Reaction time (t/h)	$\mathbf{1 8 b}$	$\mathbf{1 9 b}$	$\mathbf{1 6 b}$	Recovered 10b
M eOH	15	43	4	5	13
$\mathrm{M} \mathrm{e} \mathrm{e}_{2} \mathrm{CO}$	3	48	5	6	4

Structural elucidation of the photoproducts

The di- π-methane rearrangement products 18a, 19a and 20a showed similar spectroscopic properties, and their molecular weights equal to the reactant 10a implied formation of an additional ring system, introduction of a cyclopropano ring being suggested on the basis of ${ }^{1} \mathrm{H}$ NMR signals in the highfield region. Both compounds 18a and 19a showed IR absorption at ca. $1760 \mathrm{~cm}^{-1}$ arising from the γ-lactone carbonyl, while compound 20a showed absorption at $1748 \mathrm{~cm}^{-1}$ due to its conjugated structure. The adjacent two singlets at $\delta_{\mathrm{c}} 130.9$ and 132.7 due to two olefinic carbons in the ${ }^{13} \mathrm{C}$ N M R spectrum of compound 18a were assigned to non-conjugated sp^{2} carbons, while two separate signals at $\delta_{\mathrm{c}} 139.4$ and 169.9 corresponded to the α - and β-carbons of the enone system in compound 20a. Signals arising from olefinic carbons in compound 19a appeared at $\delta_{\mathrm{c}} 120.9$ and 150.7, as a doublet and a singlet, respectively.

21

24

27

23

26

29

Scheme 4
Table 3

Solvent	R eaction time (t/h)	Products (isolated yield \%)								
		21/24 ${ }^{\text {a }}$	22	23	25	26	27	28	29	Recovered 11
MeOH	24	22/5	17	8	2	1	7	6	3	13
$\mathrm{M} \mathrm{e}_{2} \mathrm{CO}$	5	21/4	19	10	3	1				11

a The product distributions were determined on the basis of 500 M Hz ${ }^{1} \mathrm{H}$ NMR spectra.

Although this information was consistent with depicted structures 18a, 19a and 20a, formation of other di- π-methane rearrangement products such as compounds $\mathbf{3 0}$ or $\mathbf{3 1}$, which might have been produced via the alternative $\mathrm{di}-\pi$-methane system $[C(3 a)=C(9 a)-C(9)-C(8 a)=C(4 a)]$ found in compound 10a, could not be excluded. Therefore, rigorous structural assignments for the products 18a, 19a and 20a were achieved on the basis of degradation studies as shown in Scheme 5.
Thus, hydrogenolysis of the cyclopropano lactone 18a was carried out over palladium-on-carbon to give 3 '-phenylspiro-4,5,6,7-tetrahydroindan-2,4'-tetrahydrofuran-2'-one 32 (84\%). A one-proton singlet at $\delta_{\mathrm{H}} 3.72$, a signal typical for the $\alpha-$ methine proton of the phenyl acetate system, and a singlet at δ_{c} 55.1 corresponding to the spiro carbon were consistent with the depicted structure 32, a product of cyclopropano ring-cleavage at the benzylic position in compound 18a. No signal due to benzylic protons, which might have appeared by cleavage of any cyclopropano ring bonds in the suspected product 30, were detected in the ${ }^{1} \mathrm{H}$ NM R spectrum.

Hydrogenolysis of compound 19a gave two lactones, 3a-methyl-8a-phenyl-3,3a,4,5,6,7,8,8a-octahydro-1H -indeno[1,2-c]furan-1-one 33 and 4a-phenyl-4,4a,5,5a,6,7,8,9-octahydro1H , 2 H -cycloprop[1,7a]indeno[1,2-c]furan-4-one 34, in 35 and 26% yields, respectively. The ${ }^{1} \mathrm{H}$ N M R spectrum of the major product 33 displayed a singlet at $\delta_{\mathrm{H}} 0.73$ arising from the terminal methyl, and the relative stereochemistry of the methyl and the phenyl groups was found to be in a cis relationship on the basis of differential nuclear Overhauser effect (NOE) experiments. Three singlets at $\delta_{\mathrm{c}} 135.6,135.7$ and 136.2 represented two non-conjugated olefinic carbons and the ipso carbon of the phenyl moiety. In the ${ }^{1} \mathrm{H}$ N M R spectrum of the minor product 34, signals due to the cyclopropano methylene protons still remained as a pair of doublets at $\delta_{\mathrm{H}} 0.86$ and 1.08 , and on the basis of NOE experiments, the cyclopropano ring was

18a $\stackrel{1}{+}$

32

19a

33
34

35

36
Scheme 5 Reagents: $\mathrm{i}, \mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$
shown to be in a cis relationship with the phenyl ring. Signals arising from the methylene protons at C-5 were detected at δ_{H} 1.71 and 2.42 , as a doublet of doublets and a doublet, respectively, and the trans relationship of the methine proton at C-5a with the phenyl ring was elucidated by NOE enhancements as shown in Scheme 5.

Finally, catalytic hydrogenation of the lactone 20a gave 3c-phenyl-3,3a,3b,3c,4,5,6,7,8,8a-decahydro-1H -benzo[1,3]cyclo-propa[3,4]cyclopenta[1,2-c]furan-3-one 35 in 92% yield as the sole product. Its ${ }^{1} \mathrm{H}$ N M R spectrum displayed signals due to $\alpha-$ and β-protons in the lactone moiety at $\delta_{\mathrm{H}} 3.42$ and 3.20 , respectively. On the basis of ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ correlation spectroscopy, one of the lactone γ-methylene protons was found to resonate at δ_{H} 1.85, the highly shielded feature of which was ascribed to the anisotropy of the facing phenyl ring. Between the other lactonic γ-methylene proton, which resonated at $\delta_{\mathrm{H}} 3.72$, and the α ketonic proton a significant N OE was observed, suggesting that the cyclopropano ring and the γ-lactone moiety was in a cis relationship as shown in Scheme 5.

The structure of compounds $\mathbf{1 8 b}$ and $\mathbf{1 9 b}$ was assigned by comparison of their spectroscopic properties with those of their homologous analogues 18a and 19a, respectively. Formation of fused cyclopenteno rings was evident on the basis of small cis-olefinic coupling constants, i.e. ca. 5.5 Hz each for $\mathrm{J}_{4,5}$ and $J_{2,3}$ in compounds $\mathbf{1 8}$ b and 19b, respectively, in comparison with that of the cyclohexeno moiety ($\mathrm{J}_{5,6} 10.0 \mathrm{~Hz}$) in the reactant 10b. Compound 18b was also exposed to hydrogenolysis to afford compound 26, which was identical with the di- $\pi-$ methane rearrangement product obtained in the irradiation of compound 11, and a degraded spiro compound, 3'-phenyl-spirocyclopentane-1,4'-tetrahydrofuran-2'-one 36, the spectral properties of which being correlated with those of the homologous counterpart 32

A lthough the four photoreduced products 21, 22, 23 and 24 showed similar NM R spectroscopic properties (Table 4), compounds 21,22 and $\mathbf{2 3}$ were prepared independently as outlined
in Scheme 6 and identified. Thus, by catalytic hydrogenation of the readily available all-cis lactone, 7-phenyl-1,3,3a,4,7,7a-hexa-hydroisobenzofuran-1-one 37, 11a all-cis octahydroisobenzofuranone $\mathbf{2 2}$ was obtained in 85% yield. Treatment of the same reactant 37 with sodium hydride followed by quenching with acetic acid caused isomerization to give an all-trans lactone 38, ${ }^{11 \mathrm{a}}$ which was hydrogenated over palladium-on-carbon to give the corresponding all-trans octahydroisobenzofuranone 23 in 85% overall yield from the starting material 37 . Birch reduction of compound 11 afforded the residual octahydroisobenzofuranone $\mathbf{2 1}$ in 65% yield, with the observed N OEs shown in

Scheme 6 Reagents and conditions: i, $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C} ; \mathrm{ii}, \mathrm{NaH}, \mathrm{RT}$, then AcOH ; iii, Li, liq. $\mathrm{NH}_{3},-50^{\circ} \mathrm{C}$

Scheme 6 supporting the relative stereochemistry. Spectral properties of the octahydroisobenzofuranones 21, 22 and 23 thus synthesized were in accord with those of specimens obtained by the photoirradiation of compound 11.

The double-bond migration product 25 was identical with an authentic sample prepared by sulfenylation of compound 22 followed by oxidative elimination of the methylsulfanyl group of the major sulfide, 7a-methylsulfanyl-7-phenyl-1,3,3a,4,5,6, 7,7a-octahydroisobenzofuran-1-one 39a. The major product 11 (59% yield) of the elimination was identical with the photochemical reactant $\mathbf{1 1}$ synthesized by the alternative route shown in Scheme 2.

Scheme 7 Reagents and conditions: i, M eSSM e, lithium isopropylcyclohexylamide; $\mathrm{ii}, \mathrm{NalO}_{4}$, then heat

Compounds 27, $\mathbf{2 8}$ and $\mathbf{2 9}$ displayed IR absorption at 3579$3430 \mathrm{~cm}^{-1}$ arising from hydroxy groups, and their molecular ion peaks at $\mathrm{m} / \mathrm{z} 246$ corresponded to the methanol adduct. Large coupling constants ($12.0-13.0 \mathrm{~Hz}$) of signals at $\delta_{\mathrm{H}} 2.46$ and 3.01 arising from two methine protons at $\mathrm{C}-3 \mathrm{a}$ and $\mathrm{C}-7$ in compound 27 indicated them to be in the axial (β) orientation, and significant NOE enhancements were observed between each of

Table $\mathbf{4}^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NM R spectra of the perhydroisobenzofuranones $\mathbf{2 1 , 2 2 , 2 3}$ and $\mathbf{2 4}$

Position	21			22		
	$\delta_{\mathrm{H}}{ }^{\text {a }}$		$\delta_{\mathrm{c}}{ }^{\text {b }}$	δ_{H}		$\delta_{\text {c }}$
1			177.7 (s)			174.8 (s)
3	4.10 dd	9.0, 3.5	70.9 (t)	3.91 d	9.0	70.9 (t)
	4.29 dd	9.0, 5.5		4.16 dd	9.0, 4.5	
3 a	2.86 m		34.8 (d)	2.59 dddd	12.0, $6.0 \times 2,4.5$	37.8 (d)
$4 a x$	1.44 m		25.8 (t)	1.35 dddd	$13.5 \times 2,12.0,3.5$	26.9 (t)
eq	1.88 m			1.91 dm	13.5	
$5 a x$eq	$1.44-1.52 \mathrm{~m}$		19.2 (t)	$\begin{aligned} & 1.43 \text { ddddd } \\ & 1.94-2.01 \mathrm{~m} \end{aligned}$	$13.5 \times 3,3.5 \times 2$	24.8 (t)
	$1.44-1.52 \mathrm{~m}$					
$\begin{array}{r} 6 \mathrm{ax} \\ \mathrm{eq} \end{array}$	$1.70-1.80 \mathrm{~m}$		30.6 (t)	$\begin{aligned} & 1.77 \mathrm{dddm} \\ & 1.94-2.01 \mathrm{~m} \end{aligned}$	13.5×3	26.5 (t)
	$1.70-1.80 \mathrm{~m}$					
7	3.33 ddd	$5.5,5.0 \times 2$	38.6 (d)	3.02 m		40.1 (d)
7 a	2.83 m		44.1 (d)	3.04 m		45.5 (d)
arom.	7.20-7.30 (3H, m)		126.4 (d)	7.19-7.26 (1H, m)		126.2 (d)
	7.31-7.36 (2H, m)		127.6 (d)	7.30-7.33 (4H, m)		127.9 (d)
			128.5 (d)			
			143.9 (s)			142.2 (s)
	23			24		
Position	$\delta_{\text {H }}$		$\delta_{\text {c }}$	δ_{H}		$\delta_{\text {c }}$
1			175.2 (s)			176.4 (s)
3	3.86 dd	11.0, 8.5	71.1 (t)	3.81 dd	11.0, 9.0	72.1 (t)
	4.36 dd	8.5, 6.0		4.37 dd	9.0, 6.5	
3 a	2.19 ddddd	$13.5,11.0 \times 2,6.0,3.0$	43.7 (d)	2.46 ddddd	14.0, 12.5, 11.0, 6.5, 3.0	36.2 (d)
4 ax	1.34 dddd	$12.0 \times 2,11.0,3.0$	27.7 (t)	1.34 dddd	$12.5 \times 3,4.5$	29.1 (t)
eq	$1.94-2.04 \mathrm{~m}$			2.02 dm	12.5	
$5 a x$	1.47 ddddd	$12.0 \times 3,3.5 \times 2$	25.6 (t)	1.72 m		21.3 (t)
eq	1.94-2.04 m			1.80 m		
$\begin{array}{r} 6 a x \\ \text { eq } \end{array}$	1.41 m		36.3 (t)	1.75 m		30.8 (t)
	1.94-2.04 m			2.35 dm	12.5	
7	2.72 ddd	$11.0 \times 2,3.5$	43.9 (d)	3.74 br m		36.4 (d)
7 a	2.28 dd	13.5, 11.0	48.3 (d)	2.43 dd	14.0, 4.0	49.3 (d)
arom.	7.20-7.25 (3H, m)		126.5 (d)	7.17-7.28 (3H, m)		126.3 (d)
	7.30-7.34 (2H, m)		127.1 (d)	7.40-7.45 (2H, m)		128.2 (d)
			128.3 (d)			128.9 (d)
			142.6 (s)			140.1 (s)

${ }^{\text {a }}{ }^{1} \mathrm{H}$ chemical shift values (δ ppm from $\mathrm{SiM} \mathrm{e}_{4}$) are followed by the multiplicity of the signals and the coupling constants (J/Hz). ${ }^{\mathrm{b}} \mathrm{L}$ etters $\mathrm{s}, \mathrm{d}, \mathrm{t}$ in parentheses indicate quaternary, tertiary and secondary carbons, respectively.
these signals and the axial proton ($\delta_{\mathrm{H}} 1.52$) at $\mathrm{C}-5$. The other N OEs between methylene protons in the hydroxymethyl moiety ($\delta_{\mathrm{H}} 3.99$ and 4.10) and two axial protons at $\mathrm{C}-4$ and $\mathrm{C}-6$ in the cyclohexane ring, which resonated at $\delta_{\mathrm{H}} 1.58$ and 2.13, respectively, supported the depicted stereochemistry. On the other hand, in the N OESY spectrum of compound 28, both the methine proton at $\mathrm{C}-3 \mathrm{a}\left(\delta_{\mathbf{H}} 2.79\right)$ and the axial proton at $\mathrm{C}-5$ (δ_{H} ca. 1.96) showed NOEs between aromatic protons at the ortho position ($\delta_{\mathrm{H}} 7.47$).

Small couplings of the signal at $\delta_{\mathrm{H}} 3.16(\mathrm{~J} 6.0$ and 2.5 Hz), due to the angular proton at C - 3 a in compound $\mathbf{2 9}$, with methylene protons at C-4 indicated that the proton is in the equatorial (α) configuration. Therefore, the lactonic methylene moiety is axially oriented, and its cis-fused ring system was evidenced by appreciable N OES detected with one of the lactonic methylene protons ($\delta_{\mathrm{H}} 4.36$) between the benzylic methine proton ($\delta_{\mathrm{H}} 2.92$) and also between the axial proton at $\mathrm{C}-5\left(\delta_{\mathrm{H}} 1.64\right)$.

D iscussion

Compounds 10a and 10b, when irradiated in methanol or in acetone, gave primarily phenyl-migrated products 18a and 18b, displaying a reactivity similar to the β-apolignans $\mathbf{1}$, although efficiency and selectivity of the rearrangement decreased. On the other hand, compound $\mathbf{1 1}$ afforded mainly photoreduced products 21-24. We first focused on the origin of the different chemoselectivity observed among these three systems 1,10 and 11 upon irradiation.

Zimmermann and co-workers have reported in their intensive stereochemical studies on the rearrangement (using diphenylcyclohexenone 40) that, of the two phenyl groups in the molecule 40, the axially orientated one had migrated upon irradiation as shown in Scheme 8. ${ }^{13}$ Thus, the preferred pendant phenyl migration observed in the irradiation of compounds 1 would depend on the conformation of the phenyl group to migrate, the different photoreactivity among these three systems 1, 10 and 11 being caused by their variant stereochemical features.

Scheme 8
The stereochemistry of cyclohexa-1,4-diene 41, 1,4dihydronaphthalene 42, 9,10-dihydroanthracene 43 and their derivatives had been the subject of considerable interest and, after a long controversy, the planar structure of compound 41 has recently been shown to be correct: ${ }^{14}$ introduction of substituents at the C-3 position has been reported to cause only slight conformational changes. ${ }^{14 c}$ On the other hand, com-
pound $\mathbf{4 3}$ has been assumed to exist in the boat conformation in solution, and rapid boat-to-boat inversion was suggested by the failure to observe separate ${ }^{1} \mathrm{H}$ N M R resonances for the pseudoaxial and pseudoequatorial protons at C-9 and C-10, even at low temperatures. ${ }^{144} 9$-Phenyl-9,10-dihydroanthracene 44 has also been shown to exist as an equilibrium mixture of the two conformers 44a and 44b in solution. ${ }^{14 e} \mathrm{On}$ the basis of calculations, the ease of employing the boat conformation among them has been reported as follows: compound $43>$ compound $42>$ compound 41 , although the planar structure has been assumed to be the most stable. ${ }^{14 d}$

On the basis of this information, it was speculated that compounds $\mathbf{1}$ and $\mathbf{1 0}$ adopted the boat conformation more easily than compound 11 in the photoexcited state. Thus, the efficient chemoselective rearrangement of compounds 1 to compounds 2 upon irradiation would be caused mainly by the pseudoaxial orientation of the phenyl moiety, while in compound 11 the phenyl group would be in the pseudoequatorial direction. The nature of compounds 10a and 10b would be intermediate between those of the two systems 1 and 11.

U pon irradiation of compounds 10a and 10b, formation of

the unexpected photoproducts 19a and 19b was detected, together with an additional phenyl-migrated product 20a from compound 10a. The mechanism for the formation of these compounds 19 and 20 is outlined in Scheme 10.
Due to the four di- π-methane systems in the molecule [C (3a)=C (9a)-C (9)-phenyl, C (4a)=C(8a)-C(9)-phenyl, C(3a)= $C(9 a)-C(9)-C(8 a)=C(4 a)$ and $C(9 a)=C(3 a)-C(4)-C(4 a)=C(8 a)]$, compound 10a has the a priori possibility of reacting further in four different ways leading to the biradical intermediates A, B, C and D. Thus, reactant 10a has six di- π-methane products 18 , 20,30,31,45 and 46 as possibilities. However, with preferential regioselectivity, the lactone 10a was transformed into the phenyl-migrated photoproducts 18a via the biradical species of type A. The preferable formation of compound 18a over compound 20a may be rationalized in terms of the radicalstabilizing effect of the oxygen in the fused lactone moiety, a radical at the β-position to oxygen being reported to be stabilized effectively in such a way. ${ }^{15}$ Phenyl migration to the other π-moiety, which was observed upon irradiation of compound 10a, may be ascribed to the stable nature of the tertiary radical (intermediate \mathbf{B}) relative to the secondary one (intermediate B^{\prime}). Failure of compounds $30,31,45$ and 46 to be formed may be explained in terms of the difficulty of producing fused bicyclic[3.1.0]hexane systems involving radicals in the skeleton such as intermediates \mathbf{C} and \mathbf{D}.
The unexpected minor photoproduct 19a or 19b would be produced via the intermediate of type \mathbf{A} through further photorearrangement. It is important to note that whilst compound 19a is converted into compound 18a upon irradiation, the reverse does not occur. This observation suggests the presence of an alternative route which leads to the rearrangement product 18a from compound 10a besides the well-known pathway directly through the intermediate \mathbf{A}.
In conclusion, the efficient and regioselective rearrangement observed in the photoirradiation of compounds 1 may now be rationalized mainly in terms of stereochemical rigidity, the conformation with the pseudoaxial phenyl moiety as depicted in

Scheme 10

Fig. 1

Fig. 1, being involved since it fulfils the stereoelectronic requirement for the rearrangement. The rearrangement was found quite sensitive to the described requirements; thus, compound 11 with a pseudoequatorial phenyl moiety gave little of the rearrangement product 26. Formation of another type of rearrangement product 19 was detected, the alternative pathway for the rearrangement leading to the cyclopropano products 18 a or 18 b , by way of compounds 19 a or 19 b , respectively.

Although our experiments allow certain conclusions to be drawn on the origin of the efficient di- π-methane rearrangement of compounds $\mathbf{1}$, a route via the planar structure cannot be excluded completely because of the conformational stability of the planar structure with the reactants 1,10 and 11. Further studies on the photoreactivity of the aryl-butenolidyl-methane system from this viewpoint are in progress.

Experimental

M ps were determined on Yanagimoto M P-3S micromelting point apparatus, and mps and bps are uncorrected. IR spectra were measured on a Shimadzu IR-435 grating spectrophotometer. NMR spectra were recorded on either a JEOL JNM -GSX 270 ($270 \mathrm{MHz}^{1} \mathrm{H}, 67.5 \mathrm{MHz}^{13} \mathrm{C}$) or ajEOL JNM GSX $500\left(500 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}, 125 \mathrm{M} \mathrm{Hz}^{13} \mathrm{C}\right)$ spectrometer. Chemical shifts (δ) and coupling constants (J) are given in ppm and Hz , respectively. All the NMR spectra were taken as CDCl_{3} solutions with tetramethylsilane as internal standard. Low- and high-resolution mass spectra (electron impact) were recorded on either a Shimadzu QP 1000EX spectrometer or a JEOL JM S-HX 100 spectrometer. U V-Visible spectra were taken on a Hitachi 557 spectrophotometer. Column chromatography was effected over M erck K ieselgel 60 (230-400 mesh) with a pump (FMI model RP). Preparative thin-layer chromatography (PTLC) was performed on M erck K ieselgel $60 \mathrm{~F}_{254}$. All the organic extracts were dried over anhydrous magnesium sulfate prior to evaporation. Light petroleum refers to the fraction distilling in the range $30-70^{\circ} \mathrm{C}$.

D iels- A Ider reaction of the dienes 12a and 12b with dimethyl acetylenedicarboxylate (D M AD)

A mixture of (E)-1-benzylidene-2-methylenecyclohexane 12a ${ }^{7}$ ($11.0 \mathrm{~g}, 59.8 \mathrm{mmol}$), dimethyl acetylenedicarboxylate (DM A D, $9.3 \mathrm{~g}, 65.5 \mathrm{mmol}$) and benzene ($20 \mathrm{~cm}^{3}$) was heated under reflux for 4 h . A fter evaporation of the mixture, the residue was triturated with methanol to give an orange solid (19.8 g) which, on recrystallization from methanol, gave dimethyl 1-phenyl-1,4,5,6,7,8-hexahydronaphthalene-2,3-dicarboxylate 13a (17.7 g 91%) as needles, $\mathrm{mp} 83-84^{\circ} \mathrm{C}$ (Found: C, 73.8; H, 6.9%; M^{+}, 326.1510. $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}_{4}$ requires $\mathrm{C}, 73.60 ; \mathrm{H}, 6.79 \% ; \mathrm{M}$, 326.1518); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1720$ and 1652; $\delta_{\mathrm{H}} 1.46-1.84(6 \mathrm{H}$, $\mathrm{m}), 1.90-2.12(2 \mathrm{H}, \mathrm{m}), 2.86(1 \mathrm{H}, \mathrm{br}$ dd, J 23.0 and 5.5), 3.18 (1 H , br dd, J 23.0 and 7.0), $3.55(3 \mathrm{H}, \mathrm{s}$), $3.76(3 \mathrm{H}, \mathrm{s}), 4.07$ (1 H , br t-like, J 7.0) and 7.10-7.32 (5H, m); $\delta_{\mathrm{c}} 22.5(\mathrm{t}), 22.9(\mathrm{t}), 27.5$ (t), 29.3 (t), 32.9 (t), 49.5 (d), 51.8 (q), 52.1 (q), 124.6 (s$), 126.9$ (d), 128.2 (s), 128.38 (d), 128.42 (d), 130.7 (s), 137.5 (s), 141.4 (s), 168.07 (s) and 168.14 (s); m/z 326 (${ }^{+}, 13 \%$), 294 (97), 266 (34), 235 (69) and 217 (100).

A benzene-free mixture of (E)-1-phenylbuta-1,3-diene 12b ${ }^{\mathbf{1 0}}$ $(5.3 \mathrm{~g}, 40.8 \mathrm{mmol})$ and D M A D $(6.3 \mathrm{~g}, 44.3 \mathrm{mmol})$ was heated at $150^{\circ} \mathrm{C}$ for 7 h . Work-up in a manner similar to that described above gave an orange solid (10.9 g) which, on recrystallization from methanol, gave dimethyl 3 -phenylcyclohexa-1,4-diene-1,2dicarboxylate 13b ($7.4 \mathrm{~g}, 88 \%$) as prisms, $\mathrm{mp} 60-61^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 70.66 ; \mathrm{H}, 6.0 \% ; \mathrm{M}^{+}, 272.1027 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}$ requires C, 70.58; H, $5.92 \% ; \mathrm{M}, 272.1049) ; v_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1720,1678\right.$ and 1642 ; $\delta_{\mathrm{H}} 3.00$ (1 H , dddd, J 23.5, $8.0,3.5$ and 1.5), 3.25 (1 H , dddd, J $23.5,8.0,2.5$ and 2.0), $3.53(3 \mathrm{H}, \mathrm{s}), 3.77$ ($3 \mathrm{H}, \mathrm{s}$), 4.39 (1 H , dddd, J $8.0,8.0,3.5$ and 1.5), 5.75 (1 H , dddd, J $10.5,3.5,2.0$ and 1.5), 5.83 (1H , dddd, J 10.5, 3.5, 2.5 and 1.5) and 7.15-7.34 (5H , m); $\delta_{c} 27.3$ (t), 44.0 (d), 51.8 (q), 52.1 (q), 121.2 (d), 127.1 (d), 127.4 (d), 128.3 (d), 128.6 (d), 131.0 (s), 136.8 (s), 141.3 (s), 168.0 (s) and 168.1 (s); m/z 272 ($\mathrm{M}^{+}, 4 \%$), 240 (100), 181 (54), 163 (42), 153 (46) and 115 (11).

Preparation of the cyclic anhydrides 14a and 14b

A mixture of compound 13a ($8.0 \mathrm{~g}, 24.5 \mathrm{mmol}$), formic acid ($100 \mathrm{~cm}^{3}$) and perchloric acid ($10 \mathrm{~cm}^{3}$) was heated under reflux for 2 h . A fter evaporation of the mixture, the residue was diluted with diethyl ether ($150 \mathrm{~cm}^{3}$) and the mixture was washed successively with aq. sodium hydrogen carbonate and brine, and then evaporated to give a pale brown oil (7.0 g). This, on distillation at reduced pressure, gave 4 -phenyl-1,3,4,5,6,7,8,9octahydronaphtho[2,3 -c] furan-1,3-dione $14 \mathrm{a}(6.0 \mathrm{~g}, 87 \%$) as an oil, bp $194-196^{\circ} \mathrm{C}(0.008 \mathrm{mmHg})$ (Found: $\mathrm{M}^{+}, 280.1115$. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$ requires $\mathrm{M}, 280.1100$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1850,1772$, 1696 and 1658; $\delta_{\mathrm{H}} 1.56-1.77(4 \mathrm{H}, \mathrm{m}), 1.80-1.90(2 \mathrm{H}, \mathrm{m}), 2.07-$ $2.24(2 \mathrm{H}, \mathrm{m}), 3.04(1 \mathrm{H}, \mathrm{br}$ dd, J 24.0 and 6.5), 3.16 (1 H , br dd, J 24.0 and 6.5), 4.17 ($1 \mathrm{H}, \mathrm{br}$ t-like, J 6.5) and 7.17-7.36 ($5 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}} 22.5(\mathrm{t}), 22.7(\mathrm{t}), 27.8(\mathrm{t}), 27.9(\mathrm{t}), 30.1(\mathrm{t}), 44.6(\mathrm{~d}), 125.4(\mathrm{~s})$, 127.7 (d), 128.4 (d), 128.7 (s), 128.9 (d), 138.9 (s), 141.2 (s), 144.9 (s), 163.5 (s) and 164.3 (s); m/z 280 ($\mathrm{M}^{+}, 100 \%$), 236 (51), 207 (45), 178 (43) and 165 (53).
In a similar manner, compound 13b ($7.0 \mathrm{~g}, 25.7 \mathrm{mmol}$) afforded a pale brown solid (5.2 g) which, on recrystallization from hexane, gave 4-phenyl-1,3,4,7-tetrahydroisobenzofuran-1,3dione $\mathbf{1 4 b}\left(5.1 \mathrm{~g}, 88 \%\right.$) as needles, $\mathrm{mp} 78-80^{\circ} \mathrm{C}$ (Found: C, 74.2; $\mathrm{H}, 4.7 \% ; \mathrm{M}^{+}, 226.0660 . \mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{3}$ requires C, $74.33 ; \mathrm{H}, 4.46 \%$; M , 226.0630); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1848,1775,1687$ and 1632; δ_{H} 3.20 (1 H , dddd, J $24.0,7.5,3.5$ and 2.0), 3.27 (1 H , dddd, J 24.0 , 7.5, 3.5 and 3.0), 4.47 (1 H , dddd, J $7.5,7.5,3.5$ and 2.0), 5.91 (1 H , dddd, J 10.0, 3.5, 3.0 and 2.0), 6.02 (1 H , dddd, J 10.0, 3.5 , 3.5 and 2.0) and 7.22-7.37 (5H, m); $\delta_{\mathrm{c}} 22.5(\mathrm{t}), 39.5(\mathrm{~d}), 121.4$ (d), 127.5 (d), 127.8 (d), 128.4 (d), 128.9 (d), 138.7 (s), 141.5 (s), 143.9 (s), 163.4 (s) and 164.2 (s); m/z 226 (${ }^{+}, 100 \%$), 181 (46) and 152 (58).

Sodium boranuide reduction of the anhydrides 14a and 14b

A solution of the anhydride $14 \mathrm{a}(6.0 \mathrm{~g}, 21.4 \mathrm{mmol})$ in TH F (30 cm^{3}) was added dropwise to a stirred suspension of sodium boranuide ($810 \mathrm{mg}, 23.8 \mathrm{mmol}$) in THF ($20 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . The mixture was then diluted with water ($20 \mathrm{~cm}^{3}$), acidified with 10% hydrochloric acid to pH 2 and stirred at room temperature for 2 h ; it was then extracted with diethyl ether. The extract was washed successively with aq. sodium hydrogen carbonate and brine, and evaporated to give a pale yellow solid (6.1 g) which, on recrystallization from ethanol, gave 9-phenyl-1,3,4,5,6,7,8,9octahydronaphtho[$2,3-\mathrm{c}]$ furan-1-one $\mathbf{1 0 a}$ ($3.36 \mathrm{~g}, 59 \%$) as prisms. The mother solution was evaporated to give an orange oil (3.0 g) which, on column chromatography (hexane-diethyl ether, 3:1), gave compound 10a ($805 \mathrm{mg}, 14 \%$) and 4 -phenyl-1,3,4,5,6,7,8,9-octahydronaphtho[2,3-c] furan-1-one 15a (763 mg , $13 \%)$.

Compound 10a: leaflets, mp $150-151^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 81.2; $\mathrm{H}, 6.9 \%$; $\mathrm{M}^{+}, 266.1292 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C , 81.17; H, 6.81\%; M , 266.1307); $\lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) / \mathrm{nm} 260$ and 267 tailing to ca. $290\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 580\right.$ and 315$)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$
$\mathrm{cm}^{-1} 1755,1698$ and 1659; $\delta_{\mathrm{H}} 1.54-1.76(4 \mathrm{H}, \mathrm{m}), 1.80-1.90(2 \mathrm{H}$ $\mathrm{m}), ~ 2.04-2.20(2 \mathrm{H}, \mathrm{m}), 2.89(1 \mathrm{H}, \mathrm{br}$ dd, J 23.0 and 5.0), 3.11 ($1 \mathrm{H}, \mathrm{br} \mathrm{dm}$, J 23.0), 3.99 (1 H , br t-like, J 5.0), 4.71 ($1 \mathrm{H}, \mathrm{dm}$, J 17.5), 4.77 ($1 \mathrm{H}, \mathrm{br}$ d, J 17.5), 7.17-7.23 (3H , m) and 7.24-7.29 (2H, m); $\delta_{\mathrm{c}} 22.6(\mathrm{t}), 22.8(\mathrm{t}), 28.1(\mathrm{t}), 30.1(\mathrm{t}), 30.7$ (t), $44.1(\mathrm{~d})$, 71.0 (t), 124.6 (s$), 126.7$ (d), 127.9 (s), 128.3 (d), 129.9 (s), 141.0 (s), 157.3 (s) and 172.3 (s); m/z 266 ($\mathrm{M}^{+}, 100 \%$), 237 (22), 179 (23) and 165 (25).

Compound 15a: prisms, mp $118-120^{\circ} \mathrm{C}$ (from diisopropyl ether) (Found: C, 80.9; H, 6.8\%; M^{+}, 266.1277); $\lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) /$ nm 261 and 268 tailing to ca. $290\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 699\right.$ and $548 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1753,1698$ and 1660; $\delta_{\mathrm{H}} 1.56-1.84(6 \mathrm{H}$, $\mathrm{m}), 2.05-2.20(2 \mathrm{H}, \mathrm{m}), 2.85(1 \mathrm{H}, \mathrm{br}$ dd, J 23.0 and 5.0$), 2.95$ (1H, br dm, J 23.0), 3.99 (1H, br t-like, J 6.0), 4.35 ($1 \mathrm{H}, \mathrm{dm}$, J 17.0), 4.64 ($1 \mathrm{H}, \mathrm{br}$ d, J 17.0), $7.08-7.12(2 \mathrm{H}, \mathrm{m})$ and $7.24-7.35$ (3H, m); $\delta_{\mathrm{c}} 22.7$ (t), 22.9 (t), 27.3 (t), 28.0 (t), 30.2 (t), 47.7 (d), 70.8 (t), 123.4 (s), 126.9 (s), 127.3 (s), 127.4 (d), 128.0 (d), 129.0 (d), 140.7 (s), 160.9 (s) and 173.6 (s); m/z 266 ($\mathrm{M}^{+}, 100 \%$), 237 (57), 179 (27) and 165 (28).

In a similar manner, the anhydride $\mathbf{1 4 b}(3.3 \mathrm{~g}, 14.6 \mathrm{mmol})$ afforded the corresponding lactones, 7 -phenyl-1,3,4,7-tetra-hydroisobenzofuran-1-one $\mathbf{1 0 b}(2.26 \mathrm{~g}, 73 \%)$ and 4 -phenyl-1,3,4,7-tetrahydroisobenzofuran-1-one 15b ($400 \mathrm{mg}, 13 \%$).

Compound 10b: prisms, mp $98-99^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 79.4; H , 5.9\%; M ${ }^{+}$, 212.0828. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$ requires C, 79.22; H , $5.70 \% ; \mathrm{M}, 212.0837) ; \lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 261$ and 267 tailing to ca. $300\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 408\right.$ and 266$)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1754, 1693 and 1637; $\delta_{\mathrm{H}} 3.07$ (1 H , ddm, J 23.0 and 7.0), 3.18 ($1 \mathrm{H}, \mathrm{ddm}, \mathrm{J} 23.0$ and 7.0), 4.28 ($1 \mathrm{H}, \mathrm{br} \mathrm{m}$), $4.74(1 \mathrm{H}, \mathrm{dm}$, J 17.5), 4.81 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 17.5$), 5.90 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 10.0$), 5.93 (1 H $\mathrm{dm}, \mathrm{J} 10.0), 7.20-7.26(3 \mathrm{H}, \mathrm{m})$ and $7.28-7.32(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 25.2$ (t), 38.8 (d), 71.2 (t), 120.8 (d), 126.6 (s), 126.8 (d), 128.1 (d), 128.4 (d), 129.1 (d), 140.7 (s), 157.7 (s) and 172.3 (s); m/z 212 ($\mathrm{M}^{+}, 100 \%$), 183 (21), 167 (97), 152 (42) and 91 (21).

Compound 15b: prisms, mp 68.5-69 ${ }^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: $\left.\mathrm{C}, 79.3 ; \mathrm{H}, 5.8 \% ; \mathrm{M}^{+}, 212.0828\right)$; $\lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) /$ nm 261 and 268 tailing to ca. $300\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 574\right.$ and $368) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1753,1692$ and $1636 ; \delta_{\mathrm{H}} 2.98(1 \mathrm{H}, \mathrm{dm}$, J 23.0), 3.06 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 23.0$), 4.30 (1 H , br t-like, J 8.0), 4.41 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 17.0$), 4.68 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 17.0$), 5.82 ($1 \mathrm{H}, \mathrm{dddd}, \mathrm{J} 10.0$, 3.0, 2.0 and 2.0), 6.02 (1 H , dddd, J 10.0, 3.5, 3.5, 2.0), 7.13-7.17 $(2 \mathrm{H}, \mathrm{m})$ and $7.25-7.37(3 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{c}} 22.0(\mathrm{t}), 42.4(\mathrm{~d}), 71.0(\mathrm{t})$, 123.5 (d), 123.7 (s), 126.7 (d), 127.7 (d), 127.8 (d), 129.1 (d), 140.5 (s), 159.9 (s) and 173.5 (s); m/z 212 ($\mathrm{M}^{+}, 100 \%$), 183 (20), 167 (55), 152 (29) and 91 (22).

D ehydrogenation of the bicyclic lactones 10 b and 15b

A mixture of compound 10 b ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$), palladium-on-carbon (15 mg) and xylene ($5 \mathrm{~cm}^{3}$) was heated under reflux for 1 h . The catalyst was filtered off, and the filtrate was evaporated to give a solid (30 mg) which, on recrystallization from ligroin, gave 7-phenyl-1,3-dihydroisobenzofuran-1-one 16b (27 $\mathrm{mg}, 91 \%$) as prisms, $\mathrm{mp} 155-156^{\circ} \mathrm{C}$ (lit., ${ }^{11 \mathrm{a}} \mathrm{mp} 140-142^{\circ} \mathrm{C}$, lit., ${ }^{11 \mathrm{~b}} \mathrm{mp} 155-157^{\circ} \mathrm{C}$).

In a similar manner, compound 15b ($30 \mathrm{mg}, 0.14 \mathrm{mmol}$) afforded 4-phenyl-1,3-dihydroisobenzofuran-1-one 17b (28 mg , 94%) as prisms, $\mathrm{mp} 119-121^{\circ} \mathrm{C}$ (from diisopropyl ether) (lit., , ${ }^{112}$ $\mathrm{mp} 114-116^{\circ} \mathrm{C}$, lit., ${ }^{12} \mathrm{mp} 120-121^{\circ} \mathrm{C}$). The spectral properties of both compounds 16b and 17b were in accord with those reported.

7-P henyl-1,3,4,5,6,7-hexahydroisobenzofuran-1-one 11

A suspension of 5% palladium-on-carbon (50 mg) in ethanol (5 cm^{3}) was pre-equilibrated with hydrogen. To the suspension was added a solution of compound $\mathbf{1 0 b}$ ($400 \mathrm{mg}, 1.88 \mathrm{mmol}$) in ethanol ($5 \mathrm{~cm}^{3}$), and hydrogenation was continued at room temperature and atmospheric pressuric for 1.5 h . The catalyst was filtered off, and the filtrate was evaporated to give a solid (406 mg) which, on recrystallization from diisopropyl ether, gave the title compound 11 ($354 \mathrm{mg}, 88 \%$) as prisms, $\mathrm{mp} 63-64^{\circ} \mathrm{C}$
(Found: C, 78.3; H, 6.65\%; M ${ }^{+}$, 214.1005. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ requires C, 78.48; H , 6.59\%; M , 214.0994); $\lambda_{\text {max }}(\mathrm{M} \mathrm{eOH}) / \mathrm{nm} 258,266$ and $290\left(\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1} 424,276\right.$ and 69$)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1750$ and 1672; $\delta_{\mathrm{H}} 1.70-2.08(4 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{br} \mathrm{ddd}$, J 18.5, 7.0 and 7.0), 2.47 (1 H , br ddd, J 18.5, 5.0 and 5.0), 3.77 (1 H , br slike), 4.77 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 17.5$), 4.84 (1 H, br d, J 17.5), 7.09-7.13 ($2 \mathrm{H}, \mathrm{m}$) and 7.19-7.31 (3H , m); $\delta_{\mathrm{c}} 18.1$ (t), 23.7 (t), 31.7 (t), 36.6 (d), 71.7 (t), 126.4 (d), 127.4 (s), 127.5 (d), 128.3 (d), 142.2 (s), 163.0 (s) and 173.0 (s); m/z 214 ($\mathrm{M}^{+}, 100 \%$), 185 (23), 169 (22), 142 (28), 129 (29) and 91 (21).

Photolysis of compounds 10a, 10b and 11

General procedure. All the irradiations, except those in a Pyrex test tube, were carried out with a solution of the reactant (100 mg) in methanol ($200 \mathrm{~cm}^{3}$) or acetone ($200 \mathrm{~cm}^{3}$) under argon through a Pyrex filter in a water-cooled quartz immersionwell apparatus fitted with an Ishii U V-HT 200 W high-pressure mercury lamp (time and product distribution are given in Tables 1, 2 and 3 in Schemes 3 and 4). Prior to photolysis, solutions were degassed by sonication for 30 min followed by a 30 min argon purge. Products were isolated by column chromatography of the residue left after removal of the solvent using hexane-acetone ($30: 1$) as an eluent for compounds 16, 18, 19 and 20 and hexane-diethyl ether ($4: 1$) for compounds 21-29.
Photolysis of the tricyclic lactone 10a in methanol. Three rearrangement products, 3a-phenyl-3,3a,3b,4,5,6,7,8-octahydro1H -indeno $\left[2^{\prime} 1^{\prime}: 1,3\right]$ cyclopropa[1,2-c] furan-3-one 18a, 4a-phenyl-4,4a, 6,7,8,9-hexahydro-1H ,2H -cycloprop[1,7a]indeno-[1,2-c] furan-4-one 19a, 3c-phenyl-3,3b,3c,4,5,6,7,8-octahydro1H -benzo[1,3]cyclopropa[3,4]cyclopenta[1,2-c] furan-3-one 20a and a dehydrogenated product, 9 -phenyl-1,3,5,6,7,8-hexahydronaphtho[2,3-c] furan-1-one 16a, were obtained with a recovery of a small amount of the starting material 10a.
Compound 18a: needles, mp $128-130^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 81.3; H, 7.0\%; M ${ }^{+}, 266.1321 . \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{2}$ requires C, 81.17; H, 6.81\%; M, 266.1307); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1759 ; \delta_{\mathrm{H}}$ 1.08-1.82 ($6 \mathrm{H}, \mathrm{m}$), 2.03-2.09 (2H , br m), 2.30 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 18.0$), $2.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.67(1 \mathrm{H}, \mathrm{br}$ d, J 18.0), 4.47 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0$), 4.57 (1H , d, J 9.0), 7.18-7.22 (2H , m) and 7.24-7.33 (3H , m); $\delta_{\mathrm{c}} 22.2$ (t), $22.5(\mathrm{t}), 25.0(\mathrm{t}), 26.0(\mathrm{t}), 35.7(\mathrm{t}), 38.6(\mathrm{~s}), 40.6(\mathrm{~s}), 41.8(\mathrm{~d})$, 69.2 (t), 127.8 (d), 128.2 (d), 130.7 (d), 130.9 (s), 132.7 (s), 137.2 (s) and 175.8 (s); m/z 266 (${ }^{+}, 100$), 221 (50), 207 (27), 179 (60) and 165 (51).
Compound 19a: prisms, mp 92-94 ${ }^{\circ} \mathrm{C}$ (from EtOH) (Found: $\mathrm{M}^{+}, 266.1336$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1763$ and $1633 ; \delta_{\mathrm{H}} 0.87(1 \mathrm{H}$, d, J 6.0), 0.90 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.0$), 1.20-1.42 (2H, m), 1.54 (1 H , ddddd, J 13.0, 13.0, 13.0, 3.5 and 3.5), 1.76 (1 H , ddd, J 13.0, 13.0 and 3.5), 1.86-1.98 (2H , m), 2.10 (1 H , dddd, J 14.5, 13.0, 5.0 and 2.5$), 2.53(1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 14.5), 4.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0), 4.71(1 \mathrm{H}$, d, J 9.0), 5.43 (1H, d, J 2.5) and 7.25-7.37 (5H, m); $\delta_{\mathrm{c}} 22.3(\mathrm{t})$, $24.2(\mathrm{t}), 25.4(\mathrm{t}), 27.4(\mathrm{t}), 28.7(\mathrm{t}), 34.9(\mathrm{~s}), 37.5(\mathrm{~s}), 63.2(\mathrm{~s}), 68.0$ (t), 120.9 (d), 126.5 (d), 127.5 (d), 128.8 (d), 137.7 (s), 150.7 (s) and 178.3 (s); m/z $266\left(\mathrm{M}^{+}, 100\right), 221(50), 179$ (90), 165 (81) and 115 (29).
Compound 20a: prisms, mp $158-159^{\circ} \mathrm{C}$ (from hexane-ethyl acetate) (Found: $\left.\mathrm{M}^{+}, 266.1304\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1748$ and $1651 ; \delta_{\mathrm{H}} 1.32(1 \mathrm{H}, \mathrm{m}), 1.42-1.60(3 \mathrm{H}, \mathrm{m}), 1.90(1 \mathrm{H}, \mathrm{m}), 1.96-$ $2.12(2 \mathrm{H}, \mathrm{m}), 2.18(1 \mathrm{H}, \mathrm{br}$ s), $2.21(1 \mathrm{H}, \mathrm{m}), 2.49(1 \mathrm{H}, \mathrm{br}$ d, J 19.0), 2.55 (1H, br d, J 19.0), 3.86 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 18.0$), 4.51 (1 H , $\mathrm{dm}, \mathrm{J} 18.0), 7.04-7.15(3 \mathrm{H}, \mathrm{m})$ and 7.20-7.29 (2H, m); $\delta_{\mathrm{c}} 21.7$ (t), $22.5(\mathrm{t}), 28.9$ (t), 30.6 (d), $34.9(\mathrm{t}), 37.9$ (t$), 38.3(\mathrm{~s}), 40.3(\mathrm{~s})$, 68.3 (t), 125.9 (d), 128.3 (d), 129.6 (d), 139.4 (s), 141.8 (s$)$, 169.9 (s) and 170.1 (s); m/z $266\left(\mathrm{M}^{+}, 95\right), 221$ (92), 193 (52), 179 (100), 165 (75), 115 (52) and 91 (85).

Compound 16a: plates, mp $140-141^{\circ} \mathrm{C}$ (from benzenehexane) (Found: C, 81.6; H, 6.2\%; M^{+}, 264.1173. $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.79 ; \mathrm{H}, 6.10 \%$; $\mathrm{M}, 264.1150$); $v_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1}\right.$ 1757; $\delta_{\mathrm{H}} 1.67-1.84(4 \mathrm{H}, \mathrm{m}), 2.50(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5), 2.95(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $6.5), 5.20(2 \mathrm{H}, \mathrm{s}), 7.17-7.22(2 \mathrm{H}, \mathrm{m}), 7.19(1 \mathrm{H}, \mathrm{br}$ s) and $7.37-$ $7.47(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 22.2(\mathrm{t}), 22.8(\mathrm{t}), 27.5(\mathrm{t}), 30.9(\mathrm{t}), 67.9(\mathrm{t})$,
120.4 (s), 121.5 (d), 127.5 (d), 128.0 (d), 128.7 (d), 136.0 (s), 137.0 (s), 141.4 (s), 144.0 (s), 144.7 (s) and 169.9 (s); m/z 264 $\left(\mathrm{M}^{+}, 68\right), 219$ (100), 204 (32), 192 (15), 178 (17) and 165 (16).

Photolysis of the bicyclic lactone 10b in methanol. Two rearrangement products, 3a-phenyl-3,3a,3b,6-tetrahydro-1H cyclopenta[1,3]cyclopropa[1,2-c] furan-3-one 18b and 3a-phenyl-1,1a,3a,4-tetrahydro-6H -cyclopropa[1,5]cyclopenta[1,2-c] furan4 -one 19b, and the dehydrogenated product 16 b , were obtained with recovery of a small amount of the starting material 10b. Compound 16b was identical with an authentic specimen obtained by dehydrogenation of the substrate $\mathbf{1 0 b}$.

Compound 18b: prisms, mp $176-178^{\circ} \mathrm{C}$ (from hexanediethyl ether) (Found: C, 79.2; H, 5.8\%; $\mathrm{M}^{+}, 212.0831$. $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$ requires $\mathrm{C}, ~ 79.22 ; \mathrm{H}, 5.70 \% ; \mathrm{M}, 212.0838$); $\left.v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1762 ; \delta_{\mathrm{H}} 2.46(1 \mathrm{H}, \mathrm{dm}, \mathrm{J}) 19.0\right), 2.61(1 \mathrm{H}, \mathrm{br}$ s), 2.76 ($1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 19.0$), $4.52(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.5), 4.63(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.5)$, 5.44 (1 H , ddd, J 5.5, 2.0 and 2.0), 5.79 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 5.5$), $7.16-$ $7.20(2 \mathrm{H}, \mathrm{m})$ and $7.24-7.34(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 32.8(\mathrm{t}), 39.2(\mathrm{~d}), 39.8$ (s), 40.7 (s), 69.0 (t), 127.8 (d), 128.3 (d), 128.7 (d), 130.4 (s), 131.6 (d), 132.5 (d) and 175.7 (s); m/z 212 ($\mathrm{M}^{+}, 81$), 185 (26), 167 (100), 154 (87) and 115 (23).

Compound 19b: prisms, $\mathrm{mp} \mathrm{90-91}{ }^{\circ} \mathrm{C}$ (from hexane-acetone) (Found: $\left.\mathrm{M}^{+}, 212.0834\right) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1762 ; \delta_{\mathrm{H}} 0.76$ (1H , dd, J 5.5 and 4.0), 1.23 (1 H , dd, J 8.5 and 5.5), 2.07 (1 H , ddd, J 8.5, 4.0 and 2.0), 4.29 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0$), 4.80 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0$), 5.85 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.5$), 6.17 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 5.5$ and 2.0) and $7.23-7.45$ (5H, m); $\delta_{\mathrm{c}} 16.6$ (t), 31.4 (d), 31.6 (s), 63.8 (s), 71.3 (t), 126.5 (d), 127.8 (d), 129.0 (d), 131.4 (d), 136.7 (d), 136.9 (s) and 177.3 (s); m/z $212\left(\mathrm{M}^{+}, 20\right), 182(25), 167(100), 153$ (63) and 115 (23).

Photolysis of the tricyclic lactone 10a in acetone. Three rearrangement products 18a, 19a and 20a, and the dehydrogenated product 16a were obtained together with recovery of a small amount of the starting material 10a.

Photolysis of the bicyclic lactone 10b in acetone. Two rearrangement products $\mathbf{1 8 b}$ and $\mathbf{1 9 b}$, and the dehydrogenated product 16b were obtained together with recovery of a small amount of the starting material 10b.

Photolysis of compound 19a in acetone. A mixture of compound 19a ($5.0 \mathrm{mg}, 0.019 \mathrm{mmol}$) and degassed acetone (1.5 cm^{3}) in a Pyrex test tube was irradiated for 3 h . Evaporation of the reaction mixture left a pale yellow oil $(5.0 \mathrm{mg})$ which was a 1:1.2 mixture of compound 18a and the starting material 19a Upon irradiation of this mixture for a further 3 h under the same conditions, the ratio of the contents scarcely changed (by ${ }^{1} \mathrm{H}$ N M R spectroscopy).

Photolysis of compound 19b in acetone. Compound 19b (5.0 $\mathrm{mg}, 0.024 \mathrm{mmol}$) was irradiated for 3 h under the same conditions as those described for the irradiation of compound $\mathbf{1 9 a}$. Evaporation of the reaction mixture left a pale yellow oil (5.0 mg) which was a $11: 1$ mixture of compound $\mathbf{1 8 b}$ and the starting material 19b (by ${ }^{1} \mathrm{H}$ N M R spectroscopy).

Photolysis of compounds 18a and 18b in acetone. Compounds 18a and 18b (5.0 mg , each) were irradiated separately for 3 h under the same conditions as those described for the irradiation of compound 19a. Evaporation of the reaction mixture gave recovery of the starting material 18a and 18b. No evidence for the formation of compounds 19a and 19b was detected on the basis of their ${ }^{1 \mathrm{H}} \mathrm{N}$ M R spectra.

Photolysis of compound 11 in methanol. A 4.4:1 mixture of photoreduced products (3aR*,7R*,7aS*)-7-phenyl-1,3,3a,4,5, 6,7,7a-octahydroisobenzofuran-1-one 21 and (3aS*,7S*,7aS*)isomer 24, two other photoreduced products, (3aS*, 7R*, $7 \mathrm{aR} *$)-isomer 22 and (3aS*,7R*,7aS*)-isomer 23, three solvent adducts, (3aS*,7S*,7aS*)-7a-hydroxymethyl-7-phenyl-1,3,3a,4,-5,6,7,7a-octahydroisobenzofuran-1-one 27, (3aS*,7R*,7aS*)isomer 28 and (3aR*,75*,7aS*)-isomer 29 and two rearrangement products, 7-phenyl-1,3,3a,4,5,6-hexahydroisobenzofuran-1-one 25 and 3a-phenyl-3,3a,3b,4,5,6-hexahydro-1H-cyclo-penta[1,3]cyclopropa[1,2-c]furan-3-one 26, were obtained with recovery of a small amount of the starting material $11 .{ }^{1} \mathrm{H}$ and
${ }^{13} \mathrm{C}$ NMR spectral data for the photoreduced products 21, 22, 23 and 24 are listed in Table 4.

A 4.4:1 mixture of r-3a,t-7,c-7a- and r-3a,t-7,t-7aperhydroisobenzofuranones 21 and 24: oil; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1768. The two isomers $\mathbf{2 1}$ and $\mathbf{2 4}$ were separated by G C-M S; for the major isomer 21 (Found: $\mathrm{M}^{+}, 216.1177 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ requires M, 216.1150); m/z 216 (M ${ }^{+}, 39$), 144 (100), 129 (43), 117 (23) and 91 (47). For the minor isomer 24 (Found: $\mathrm{M}^{+}, 216.1139$); $\mathrm{m} / \mathrm{z} 216\left(\mathrm{M}^{+}, 56\right), 144(46), 129(70), 117$ (62) and 91 (100). The ratio of compounds 21 and 24 in the mixture was determined on the basis of the $500 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N \mathrm{M}$ R spectrum.
The all-cis-perhydroisobenzofuranone 22: prisms, mp 98$100^{\circ} \mathrm{C}$ (from isopropyl ether) (Found: C, $77.5 ; \mathrm{H}, 7.4 \% ; \mathrm{M}^{+}$, 216.1177. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.75 ; \mathrm{H}, 7.46 \%$; M , 216.1150); $v_{\max }\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1770 ; \mathrm{m} / \mathrm{z} 216\left(\mathrm{M}^{+}, 100\right), 144(59), 129(39)\right.$, 117 (42) and 91 (51).

The all-trans-perhydroisobenzofuranone 23: prisms, mp 143$145^{\circ} \mathrm{C}$ (from diethyl ether) (Found: C, 77.5; H, 7.6\%; M ${ }^{+}$, 216.1121); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1779 ; \mathrm{m} / \mathrm{z} 216\left(\mathrm{M}^{+}, 93\right), 144(66)$, 129 (100), 117 (61) and 91 (83).
The r-3a,c-7,c-7a-hydroxymethylperhydroisobenzofuranone 27: needles, $\mathrm{mp} 150-152^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: $\mathrm{M}^{+}, 246.1246 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{M}, 246.1255$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3551,3430$ and $1774 ; \delta_{\mathrm{H}} 1.17$ (1 $\mathrm{H}, \mathrm{dd}, \mathrm{J} 8.0$ and 2.0, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 1.52 (1 H , ddddd, J 13.0, 13.0, 12.0, 4.0 and 4.0), 1.58 (1 H , dddd, J $12.0,12.0,12.0$ and 4.0), 1.77 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 12.0$), 1.82 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 13.0$), 2.04 ($1 \mathrm{H}, \mathrm{dm}$, J 13.0), 2.13 (1 H , dddd, J 13.0, 13.0, 12.0 and 4.5), 2.46 (1 H , dddd, J 12.0, 12.0, 8.0 and 3.0), 3.01 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13.0$ and 4.0), 3.99 (1 H , dd, J 11.5 and 8.0), 4.10 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5$ and 2.0), 4.25 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.0$ and 8.0), 4.29 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.0$ and 8.0), $7.25-7.31$ $(2 \mathrm{H}, \mathrm{m})$ and 7.31-7.38(3H , m); $\delta_{\mathrm{c}} 21.4(\mathrm{t}), 26.0(\mathrm{t}), 27.8(\mathrm{t}), 47.4$ (d), 48.0 (d), 49.5 (s), 58.6 (t), 69.4 (t), 127.4 (d), 128.1 (d), 129.3 (d), 140.5 (s) and 177.1 (s); m/z 246 (${ }^{+}, 10$), 229 (17), 216 (88), 144 (57), 129 (64), 117 (68) and 91 (100).
The r-3a,t-7,c-7a-hydroxymethylperhydroisobenzofuranone 28: needles, $m p ~ 141-142^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: $\mathrm{M}^{+}, 246.1246$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3544,3431$ and 1762 ; $\delta_{\mathrm{H}} 1.23-1.28\left(1 \mathrm{H}, \mathrm{br} \mathrm{s}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 1.65(1 \mathrm{H}, \mathrm{m})$, $1.84(1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 13.0), 1.92-2.04(3 \mathrm{H}, \mathrm{m}), 2.16$ (1 H , dddd, J 15.0, 10.5, 7.0 and 6.0), 2.79 (1 H , dddd, J 13.0, 12.0, 8.0 and 3.5), 3.67 (1 H , br d, J 6.0), 4.03 (1 H , d, J 12.0), 4.09 (1 H , dd, J 12.0 and 8.0), $4.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 12.0), 4.23(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.0$ and 8.0), 7.18-7.31 (3H , m) and 7.43-7.51 (2H , m); $\delta_{\mathrm{c}} 21.1(\mathrm{t}), 22.1$ (t), 25.3 (t), 37.7 (d), 39.2 (d), 51.3 (s), $69.0(t), 70.5(t), 126.6$ (d), 128.0 (d), 129.9 (d), 141.4 (s) and 178.3 (s); m/z 246 (M^{+}, $0.6), 228$ (4), 215 (97), 144 (100), 129 (63), 117 (54) and 91 (90).

Ther-3a,t-7,t-7a-hydroxymethylperhydroisobenzofuranone 29: needles, mp 158-160 ${ }^{\circ} \mathrm{C}$ (from hexane-diethyl ether) (Found: $\left.\mathrm{M}^{+}, 246.1244\right) ; v_{\max }\left(\mathrm{CH} \mathrm{Cl}_{3}\right) / \mathrm{cm}^{-1} 3579,3467$ and $1761 ; \delta_{\mathrm{H}} 1.44$ (1 H , dd, J 7.0 and 3.5 , exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 1.64 (1 H , ddddd, J 12.5, 12.5, 12.5, 3.5 and 3.5). 1.72 ($1 \mathrm{H}, \mathrm{dm}$, J 12.5), 1.76-1.87 (3H, m), 1.90 (1 H , dddd, J 12.5, 12.5, 12.5 and 2.5), 2.92 (1 H , dd, J 12.5 and 3.5), 3.16 (1 H , dddd, J 11.0, 8.5, 6.0 and 2.5), 3.65 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5$ and 3.5), 3.71 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5$ and 7.0), 4.32 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5$ and 8.5), 4.36 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.0$ and 8.5), 7.05-7.09 (2H, m) and 7.25-7.34 (3H, m); $\delta_{\mathrm{c}} 21.3(\mathrm{t}), 21.4(\mathrm{t})$, 27.4 (t), 34.9 (d), 42.6 (d), 50.5 (s), 59.5 ($t), 67.4$ (t), 127.2 (d), 127.9 (d), 129.0 (d), 139.3 (s) and 178.4 (s); m/z 246 (M ${ }^{+}, 4$), 228 (66), 215 (52), 144 (33), 130 (65), 117 (67) and 91 (100).

The hexahydroisobenzofuranone 25: prisms, $\mathrm{mp} 90-91^{\circ} \mathrm{C}$ (from diisopropyl ether) (Found: M^{+}, 214.1010. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{M}, 214.0994) ; v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1752$ and $1660 ; \delta_{\mathrm{H}}$ 1.30 (1 H , dddd, J 13.5, 12.0, 11.0 and 3.0), 1.72 ($1 \mathrm{H}, \mathrm{m}$), 2.06 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 12.0$), 2.13 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 12.0$), 2.49 ($1 \mathrm{H}, \mathrm{dddd}, \mathrm{J} 20.0$, 11.0, 6.5 and 4.5), 2.57 (1 H , dddd, J 20.0, 7.0, 3.0 and 2.0), 3.10 $(1 \mathrm{H}, \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10.0$ and 8.5$), 4.54(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}) 8.5$ and 8.5) and $7.25-7.38(5 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 21.7(\mathrm{t}), 25.2(\mathrm{t}), 32.6(\mathrm{t}), 38.3(\mathrm{~d})$, 71.1 (t$), 122.9$ (s), 127.4 (d), 127.7 (d), 128.1 (d), 138.2 (s), 150.0
(s) and 168.7 (s); m/z 214 ($\mathrm{M}^{+}, 100$), 184 (17), 170 (41), 155 (26), 142 (28), 128 (45) and 115 (30).

The hexahydrocyclopentacyclopropafuranone 26: needles, mp $92-93^{\circ} \mathrm{C}$ (from cyclohexane) (Found: C, 78.5; H, 6.6\%; M ${ }^{+}$, 214.0985. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.48 ; \mathrm{H}, 6.59 \%$; M , 214.0994); $v_{\text {max }}\left(\mathrm{CHCl}_{3} / \mathrm{cm}^{-1} 1758 ; \delta_{\mathrm{H}} 0.39\right.$ (1 H , ddddd, J 13.0, 11.0, 11.0, 9.0 and 9.0), 1.47 (1 H , dddm, J 13.0, 9.0 and 9.0), 1.82 (1 H , dd, J 14.0 and 9.0), $1.87(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 5.0), 1.96-2.10(3 \mathrm{H}, \mathrm{m}), 4.42(1 \mathrm{H}$, d, J 9.0), $4.50(1 \mathrm{H}, \mathrm{br}$ d, J 9.0), 7.26-7.30 (2H, m) and 7.31-7.40 (3H, m); $\delta_{\mathrm{c}} 21.8$ (t), 25.7 (t), 25.9 (t), 33.3 (d), 38.7 (s$), 43.5(\mathrm{~s})$, 69.6 (t), 128.0 (d), 128.8 (d), 129.8 (d), 131.5 (s) and 176.4 (s); $\mathrm{m} / \mathrm{z} 214\left(\mathrm{M}^{+}, 100\right), 184(54), 156$ (34), 141 (47), 128 (32), 115 (35) and 91 (27).

Photolysis of compound $\mathbf{1 1}$ in acetone. A 5.3:1 mixture of the photoreduced products $\mathbf{2 1}$ and 24, and two other photoreduced products $\mathbf{2 2}$ and 23 , and two rearrangement products $\mathbf{2 5}$ and $\mathbf{2 6}$ were obtained together with recovery of a small amount of the starting material 11.

Catalytic hydrogenation of compounds 18a, 18b, 19a and 20. Following the method similar to that used for the preparation of compound 11, compound 18 a ($30.0 \mathrm{mg}, 0.11 \mathrm{mmol}$) was hydrogenated, and worked up to give a solid (30.0 mg) which, on recrystallization from ethanol, gave 3 '-phenylspiro-4,5,6,7-tetrahydroindan-2,4'-tetrahydrofuran-2'-one 32 ($25.5 \mathrm{mg}, 84 \%$) as colourless prisms, $\mathrm{mp} 99-100^{\circ} \mathrm{C}$ (Found: M^{+}, 268.1444. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\left.\mathrm{M}, 268.1463\right)$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1765 ; \delta_{\mathrm{H}}$ 1.38-1.60 (5H, m), 1.70-1.93 (3H, m), $1.96(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 16.0)$, 2.17 ($1 \mathrm{H}, \mathrm{br}$ d, J 16.0), 2.38 ($1 \mathrm{H}, \mathrm{br}$ d, J 16.0), 2.52 ($1 \mathrm{H}, \mathrm{br}$ d, J 16.0), 3.72 ($1 \mathrm{H}, \mathrm{s}$), 4.18 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$), 4.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$), $7.14-$ $7.19(2 \mathrm{H}, \mathrm{m})$ and $7.28-7.38(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 22.6(\mathrm{t}), 22.7(\mathrm{t}), 25.3(\mathrm{t})$, 25.4 (t), 41.5 (t$), 46.0$ (t$), 55.1$ (s$), 55.7(\mathrm{~d}), 78.6$ (t$), 127.5(\mathrm{~d})$, 128.5 (d), 129.4 (d), 132.0 (s), 133.0 (s), 133.9 (s) and 177.1 (s); $\mathrm{m} / \mathrm{z} 268\left(\mathrm{M}^{+}, 17\right), 133$ (100), 118 (16), 105 (12) and 91 (68).

In a similar manner, compound 19a ($30.3 \mathrm{mg}, 0.11 \mathrm{mmol}$) afforded quantitatively an oil which, on PTLC (hexaneacetone, $50: 1$), gave (3aS*,8aS*)-3a-methyl-8a-phenyl-3,3a,4,5,6,7,8,8a-octahydro-1H -indeno[1,2-c] furan-1-one 33 ($10.7 \mathrm{mg}, 35 \%$) and ($1 \mathrm{aS*}, 4 a S^{*}, 5 \mathrm{aR}^{*}, 9 \mathrm{aS} *$)-4a-phenyl-4,4a,5,5a,6,7,8,9-octahydro-1H ,2H-cycloprop[1,7a]indeno[1,2-c]-furan-4-one 34 ($7.9 \mathrm{mg}, 26 \%$).

Compound 33: oil, bp $147-149{ }^{\circ} \mathrm{C} / 0.007 \mathrm{mmHg}$ (decomp.) (Found: M^{+}, 268.1449. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{2}$ requires $\mathrm{M}, 268.1463$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1765 ; \delta_{\mathrm{H}} 0.73(3 \mathrm{H}, \mathrm{s}), 1.60-1.71(4 \mathrm{H}, \mathrm{m}), 1.88$ ($1 \mathrm{H}, \mathrm{br}$ d, J 17.5), 1.96 ($1 \mathrm{H}, \mathrm{br} \mathrm{dm}$, J 17.5), 2.02 ($1 \mathrm{H}, \mathrm{br} \mathrm{dm}$, J 17.5), 2.06 (1 H , br d, J 17.5), 2.95 ($1 \mathrm{H}, \mathrm{br}$ d, J 16.5), 3.08 (1 H , br dm, J 16.5), 3.87 (1H, d, J 9.0), 4.31 (1H , d, J 9.0), 7.18-7.23 $(2 \mathrm{H}, \mathrm{m})$ and $7.26-7.39(3 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}} 17.9(\mathrm{q}), 21.3(\mathrm{t}), 22.60(\mathrm{t})$, 22.63 (t), 25.6 (t$), 43.5$ (t$), 58.0$ (s$), 61.7$ (s$), 72.2$ (t$), 127.40$ (d), 127.43 (d), 128.7 (d), 135.6 (s), 135.8 (s), 136.2 (s) and 182.9 (s); $\mathrm{m} / \mathrm{z} 268\left(\mathrm{M}^{+}, 64\right), 233(100), 210(43), 195(32), 181$ (45) and 167 (42).

Compound 34: prisms, mp $132.5-134.5^{\circ} \mathrm{C}$ (from EtOH) (Found: $\mathrm{M}^{+}, 268.1441$); $v_{\max }\left(\mathrm{CH} \mathrm{Cl}_{3}\right) / \mathrm{cm}^{-1} 1768 ; \delta_{\mathrm{H}} 0.86(1 \mathrm{H}, \mathrm{d}$, J 6.0), 1.06 (1 H , dddd, J 13.0, 13.0, 13.0 and 3.0), 1.08 (1 H , d, J 6.0), 1.10-1.28 (3H, m), 1.67-1.74 [3H, m, including oneproton doublet of doublets at $\delta_{\mathrm{H}} 1.71$ (J 14.0 and 7.0)], 1.80 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 13.0$), 1.95 ($1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 15.0,13.0$ and 4.0), 2.10 (1 H ddd, J 13.0, 7.0 and 7.0), 2.42 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 14.0$), 4.18 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0$), $4.67(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0), 7.23-7.36(3 \mathrm{H}, \mathrm{m})$ and $7.48-7.52(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}$ 16.9 (t), 25.06 (t$), 25.11$ (t$), 29.2$ (t$), 32.9$ (t$), 33.2$ (s$), 38.3$ (s$)$, 40.1 (d), 41.3 (t), 57.3 (s), 67.5 (t), 126.7 (d), 127.4 (d), 128.7 (d), 138.8 (s) and 179.9 (s); m/z $268\left(\mathrm{M}^{+}, 18\right), 224$ (91), 174 (100), 167 (42), 142 (64) and 129 (64).

In a similar manner, compound 20 ($25.5 \mathrm{mg}, 0.095 \mathrm{mmol}$) afforded quantitatively a solid which, on recrystallization from hexane, gave (3aS*,3bS*,3cR*,7aS*,8aR*)-3c-phenyl-3,3a,3b, 3c,4,5,6,7,8,8a-decahydro-1H -benzo[1,3]cyclopropa[3,4]cyclo-penta[1,2-c]furan-3-one 35 ($23.6 \mathrm{mg}, 92 \%$) as needles, mp $129.5-130^{\circ} \mathrm{C}$ (Found: $\mathrm{M}^{+}, 268.1441$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1748$; $\delta_{\mathrm{H}} 1.22-1.50(4 \mathrm{H}, \mathrm{m}), 1.72(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 14.0,8.5$ and 4.5$), 1.85$
($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5$ and 8.5), 1.86 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5$), 1.90-1.98 ($2 \mathrm{H}, \mathrm{m}$), 2.05 (1 H , dd, J 15.0 and 10.5), 2.02-2.08 ($1 \mathrm{H}, \mathrm{m}$), 2.09 (1 H , dd, J 15.0 and 3.5), 3.20 (1 H , ddddd, J $12.5,11.0,10.5,8.5$ and 3.5), 3.42 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.5$ and 8.5), 3.72 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.0$ and 8.5) and 7.13-7.40 (5H , br m); $\delta_{c} 21.3(\mathrm{t}), 22.6(\mathrm{t}), 29.1(\mathrm{t}), 36.4(\mathrm{~s}), 37.0$ (d), 37.8 (t), 39.7 (t), 40.4 (s), 40.7 (d), 47.5 (d), 71.5 (t), 126.8 (d), 128.0 (d), 128.8 (d), 129.9 (d), 130.8 (d), 142.0 (s) and 179.6 (s); m/z 268 (M ${ }^{+}, 28$), 181 (52), 167 (56), 141 (64) and 91 (100).

In a similar manner, compound $\mathbf{1 8 b}$ ($60 \mathrm{mg}, 0.28 \mathrm{mmol}$) afforded quantitatively a solid which, on PTLC (benzene), gave compound 26 and 3^{\prime}-phenylspirocyclopentane-1,4'-tetra-hydrofuran- 2^{\prime}-one 36 ($8.0 \mathrm{mg}, 13 \%$). The physical and spectral properties of compound $\mathbf{2 6}$ were in accord with those of the specimen obtained by the photolysis of compound $\mathbf{1 1 .}$

Compound 36: leaflets, mp $78-79^{\circ} \mathrm{C}$ (from cyclohexane) (Found: M^{+}, 216.1166. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{M}, 216.1150$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1768$; $\delta_{\mathrm{H}} 1.19-1.28(1 \mathrm{H}, \mathrm{m}), 1.36-1.66(5 \mathrm{H}$, m), 1.70-1.84 (2H , m), $3.71(1 \mathrm{H}, \mathrm{s}), 4.09$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0$), 4.20 (1H , d, J 9.0), 7.13-7.18 (2H , m) and 7.29-7.39 (3H , m); $\delta_{\mathrm{c}} 23.4$ (t), 23.5 (t$), 31.3$ (t$), 35.8$ (t), 52.7 (s$), 55.1$ (d), 76.7 (t), 127.6 (d), 128.6 (d), 129.7 (d), 133.8 (s) and 177.3 (s); m/z 216 (${ }^{+}, 38$), 172 (27), 129 (39), 118 (39) 91 (47) and 81 (100).

Catalytic hydrogenation of the hexahydroisobenzofuranone 37 Following the method similar to that used for the preparation of compound 11, (3aR*,7S*,7aR*)-7-phenyl-1,3,3a,4,7,7a-hexahydroisobenzofuran-1-one $37^{11 \mathrm{a}}$ ($3.2 \mathrm{~g}, 15.0 \mathrm{mmol}$) was hydrogenated, and worked up to give quantitatively a solid which, on recrystallization from diisopropyl ether, gave perhydroisobenzofuranone $22(2.75 \mathrm{~g}, 85 \%)$ as prisms. The physical and spectral properties of compound 22 were in accord with those of the specimen obtained by the irradiation of compound 11.

(3aR *,7S*,7aS*)-7-P henyl-1,3,3a,4,7,7a-hexahydroisobenzo-furan-1-one 38

A mixture of the hexahydroisobenzofuranone 37 ($400 \mathrm{mg}, 1.86$ mmol), sodium hydride (60% in liquid paraffin, washed twice with benzene; $85 \mathrm{mg}, 2.1 \mathrm{mmol}$), and THF ($10 \mathrm{~cm}^{3}$) was stirred at room temperature for 30 min . The reaction was quenched by the addition of acetic acid $\left(0.5 \mathrm{~cm}^{3}\right)$ to the mixture which was then poured into ice-cooled water ($30 \mathrm{~cm}^{3}$) and extracted with diethyl ether. The extract was washed with aq. sodium hydrogen carbonate, and evaporated to give a pale yellow oil (415 mg) which, on recrystallization from hexane-acetone, gave title compound 38 ($380 \mathrm{mg}, 95 \%$) as colourless needles, mp 136 $137^{\circ} \mathrm{C}$ (lit., ${ }^{11 \mathrm{a}} \mathrm{mp} 137-138{ }^{\circ} \mathrm{C}$) (Found: C, $78.6 ; \mathrm{H}, 6.6 \% ; \mathrm{M}^{+}$, 214.1010. $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.48$; $\mathrm{H}, 6.59 \%, \mathrm{M}, 214.0994$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 1780 ; \delta_{\mathrm{H}} 2.10-2.60(4 \mathrm{H}, \mathrm{m}), 3.62(1 \mathrm{H}, \mathrm{dm}$, J 11.0), 3.89 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.0$ and 9.0), 4.43 (1 H , dd, J 9.0 and 7.0), 5.69 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 10.0$), 5.89 ($1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 10.0$) and 7.20-7.37 (5H, m); $\delta_{\mathrm{c}} 27.9$ (t), 39.2 (d), 43.1 (d), 47.3 (d), 71.3 (t), 125.9 (d), 126.8 (d), 128.3 (d), 131.8 (d), 141.7 (s) and 175.7 (s); m/z $214\left(\mathrm{M}^{+}, 100\right), 173$ (63), 155 (61), 142 (42), 129 (62), 115 (52) and 91 (59).

C atalytic hydrogenation of the hexahydroisobenzofuranone 38

Following the method similar to that used for the preparation of compound 11 , compound 38 ($58.0 \mathrm{mg}, 0.27 \mathrm{mmol}$) was hydrogenated, and worked up to give quantitatively a solid which, on recrystallization from diethyl ether, gave the perhydroisobenzofuranone 23 ($52.1 \mathrm{mg}, 89 \%$) as prisms. The physical and spectral properties of compound 23 were in accord with those of the specimen obtained by the irradiation of compound 11 .

Birch reduction of compound 11

A solution of compound $\mathbf{1 1}(50 \mathrm{mg}, 0.23 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$ was added to a stirred solution of lithium ($20 \mathrm{mg}, 2.9 \mathrm{mmol}$) in liquid ammonia (ca. $10 \mathrm{~cm}^{3}$) at $-50^{\circ} \mathrm{C}$. A fter the deep blue
reaction mixture had turned pale yellow it was treated with ammonium chloride ($100 \mathrm{mg}, 1.87 \mathrm{mmol}$) and gently heated to remove the resulting ammonia. A fter this, the mixture was filtered, and the residue was washed with diethyl ether. The combined filtrate and washings were washed with brine, and evaporated to give a pale yellow oil (43 mg) which, on distillation under reduced pressure, gave the perhydroisobenzofuranone 21 (33 mg, 65\%) as an oil, bp $100-102^{\circ} \mathrm{C} / 0.009 \mathrm{mmH}$ g. This material solidified with time

Compound 21: needles, mp $79-81^{\circ} \mathrm{C}$ (from diisopropyl ether) (Found: $\mathrm{C}, 77.6 ; \mathrm{H}, 7.5 \% ; \mathrm{M}^{+}, 216.1174 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.75 ; \mathrm{H}, 7.46 \% ; \mathrm{M}, 216.1150)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 1768. The spectral properties of compound 21 were in accord with those of the specimen obtained by the irradiation of compound 11.

Sulfenylation of compound 22

A ccording to a previously described method, ${ }^{55}$ a solution of compound $22(2.0 \mathrm{~g}, 9.3 \mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$ was treated with a solution of lithium isopropylcyclohexylamide [prepared from N -isopropylcyclohexylamine ($2.36 \mathrm{~cm}^{3}, 14.3 \mathrm{mmol}$) and a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution of butyllithium in hexane $\left(8.9 \mathrm{~cm}^{3}, 14.2\right.$ $\mathrm{mmol})$ in THF $\left(20 \mathrm{~cm}^{3}\right)$]. The solution of the lithium enolate thus prepared was added dropwise to a solution of dimethyl disulfide ($2.45 \mathrm{~cm}^{3}, 27.8 \mathrm{mmol}$) in THF ($10 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. A fter being stirred at $0^{\circ} \mathrm{C}$ for 5 h , the mixture was poured into brine $\left(30 \mathrm{~cm}^{3}\right)$ and extracted with benzene. The extract was washed successively with 10% aq. sulfuric acid and brine, and then evaporated to give an orange oil (3.0 g) which on column chromatography (hexane-acetone, $50: 1$), gave ($3 \mathrm{a} * *, 75^{*}, 7 \mathrm{TaR}$)-7a-methylsulfanyl-7-phenyl-1,3,3a,4,5,6,7,7a-octahydroisobenzo-furan-1-one 39a (1.82 g, 75\%) and its (3aS*,7S*,7aS*)-isomer 39b ($72.8 \mathrm{mg}, 3 \%$).

M ajor sulfide 39a: prisms, mp $76-77^{\circ} \mathrm{C}$ (from light petroleum) (Found: C, 68.5; H, 6.9\%; $\mathrm{M}^{+}, 262.1039 . \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.67 ; \mathrm{H}, 6.91 \% ; \mathrm{M}, 266.1027)$; $v_{\max }\left(\mathrm{CH} \mathrm{Cl}_{3}\right) / \mathrm{cm}^{-1}$ 1764; $\delta_{\mathrm{H}} 1.31(3 \mathrm{H}, \mathrm{s}), 1.43-1.61(3 \mathrm{H}, \mathrm{m}), 1.81-1.95(3 \mathrm{H}, \mathrm{m})$, $2.04(1 \mathrm{H}, \mathrm{dm}, \mathrm{J} 13.0), 2.26(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 12.0,6.0$ and 4.0$), 3.00$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.5$ and 4.0), 3.80 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0$), 4.78 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.0$ and 4.0), 7.22-7.31 (3H, m) and 7.57-7.61 ($2 \mathrm{H}, \mathrm{m}$); $\delta_{\mathrm{c}} 14.4(\mathrm{q})$, 25.0 (t), 29.5 (t), 30.1 (t), 45.1 (d), 53.1 (d), 54.5 (s), 71.0 (t), 126.9 (d), 127.3 (d), 130.8 (d), 140.1 (s) and 171.5 (s); m/z 262 ($\mathrm{M}^{+}, 100$), 216 (69), 169 (22), 144 (26), 130 (56), 115 (48) and 91 (88).

M inor sulfide 39b: prisms, mp 154-155 ${ }^{\circ} \mathrm{C}$ (from light petroleum) (F ound: C, 68.45; H, 6.9\%; $\mathrm{M}^{+}, 262.1033$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1768 ; \delta_{\mathrm{H}} 1.41$ (1 H , ddddd, J $13.5,13.5,13.0,4.5$ and 4.5), $1.43(3 \mathrm{H}, \mathrm{s}), 1.58(1 \mathrm{H}$, dddd, J 13.0, 13.0, 13.0 and 4.0$), 1.68$ (1H, dm, J 13.0), 1.77 (1H , dm, J 13.5), 1.96 (1H , dm, J 13.5), 2.44-2.55 (2H , m), 3.07 (1 H , dd, J 12.5 and 3.5), $4.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 8.0 and 6.5), $4.42(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.0$ and 8.0$), 7.23-7.32(3 \mathrm{H}, \mathrm{m})$ and 7.49-7.53 (2H, m); $\delta_{c} 14.2(\mathrm{q}), 22.0(\mathrm{t}), 25.7(\mathrm{t}), 28.1(\mathrm{t})$, 48.6 (d), 49.8 (d), 55.2 (s), 69.1 (t), 127.1 (d), 127.4 (d), 130.0 (d), 139.1 (s) and 172.0 (s); m/z 262 ($\mathrm{M}^{+}, 100$), 216 (16), 169 (15), 144 (27), 129 (30), 115 (30) and 91 (61).

Sodium metaperiodate oxidation of the sulfide 39a

A mixture of the sulfide 39a ($590 \mathrm{mg}, 2.25 \mathrm{mmol}$), sodium metaperiodate ($730 \mathrm{mg}, 3.14 \mathrm{mmol}$), THF ($15 \mathrm{~cm}^{3}$) and water $\left(15 \mathrm{~cm}^{3}\right)$ was heated at $80^{\circ} \mathrm{C}$ for 5 h . A fter being cooled, the mixture was poured into ice-water ($50 \mathrm{~cm}^{3}$) and extracted with diethyl ether. The extract was washed successively with aq. sodium thiosulfate-sodium hydrogen carbonate and brine, and evaporated to give an orange oil (585 mg) which, on column chromatography (hexane-acetone, 20:1), gave compound 11
(285 mg, 59\%) and its regioisomer 25 (111 mg, 23\%). The spectral properties of the major product 11 were in accord with those of the specimen synthesized by catalytic hydrogenation of compound 10b, and the minor one with the photoproduct $\mathbf{2 5}$ obtained by the irradiation of compound 11.

A cknowledgements

We are grateful to Professor Takefumi M omose, Toyama M edical and Pharmaceutical University, for helpful suggestions. Financial support from the Pharmaceutical Research and Technology Institute of K inki U niversity is greatly acknowledged. This study was also supported by a Grant-in-A id for Science Research from the Japan Private School Promotion Foundation.

R eferences

1 Part 6. O. M uraoka, G. Tanabe, M. Higasiura, T. M inematsu and T. M omose, J. C hem. Soc., Perkin Trans. 1, 1995, 1437.

2 M .-D. Su, Chem. Phys. Lett., 1995, 237, 317; H. E. Zimmerman, in Organic P hotochemistry, ed. A. Padwa, M arcel D eckker, N ew York, 1991, vol. 11, p. 1; H. E. Zimmerman, in R earrangements in Ground and Excited States, ed. P. De M ayo, A cademic Press, Inc., New York, 1980, vol. 3, p. 131; S. S. Hixon, P. S. M ariano and H. E. Zimmerman, Chem. R ev., 1973, 73, 531, and references cited therein.
3 T. M omose, K. K anai and T. N akamura, Chem. P harm. Bull., 1978, 26, 1592; H eterocycles, 1976, 4, 1481
4 T. Momose, G. Tanabe, H. Tsujimori and O. M uraoka, Chem. P harm. Bull., 1992, 40, 2525; T. M omose, G. Tanabe, H. Tsujimori, M . H igashiura, I. Imanishi and K . K anai, H eterocycles, 1989, 29, 257.

5 O. M uraoka, G. Tanabe, K. Sano, T. M inematsu and T. M omose, J. C hem. Soc., Perkin Trans. 1, 1994, 1833; O. M uraoka, G. Tanabe, K. Sano and T. M omose, H eterocycles, 1992, 34, 1093.

6 O. M uraoka, G. Tanabe and T. M omose, Heterocycles, 1990, 31, 1589.

7 B. K. Banik, G. V. Subbaraju, M. S. M anhas and A. K. Bose, Tetrahedron L ett., 1996, 37, 1363.
8 A. N umata, K . Ohno, H. Irie and S. U yeo, Y akugaku Z asshi, 1968, 88, 1151 (C hem. A bstr., 1969, 47 193a).
9 C. Soucy, D. Favreau and M. M. K ayser, J. Org. Chem., 1987, 52, 129; M. M . K ayser, L. Breau, S. Eliev, P. M orand and H. S. Ip, C an. J. Chem., 1986, 64, 104; A. N ose and T. K udo, Y akugaku Z asshi, 1975, 95, 1390 (C hem. A bstr., 1976, 58 856j); D. M . Bailey and R . E. Johnson, J. O rg. C hem., 1970, 35, 3574, and references cited therein. 10 G. Wittig and U. Schöllkopf, C hem. Ber., 1954, 87, 1318.
11 (a) E. E. Smissman, R . J. M urray, J. D. M cChesney, L. L. H ouston and T. L. Pazdernik, J. M ed. Chem., 1976, 19, 148; (b) J. Becher, H. C. N ielsen, J. P. Jacobsen, O. Simonsen and H. Clausen, J. Org. C hem., 1988, 53, 1862.
12 M. Noguchi, S. K akimoto, H. K awakami and S. K ajigaeshi, H eterocycles, 1985, 23, 1085.
13 H. E. Zimmerman and M. J. Zuraw, J. Am. Chem. Soc., 1989, 111, 7974, and references cited therein.
14 (a) R. K. Dhar, A. Sygula, F. R. Fronczek and P. W. Rabideau, Tetrahedron, 1992, 48, 9417; (b) P. W. R abideau, J. L. M ooney and K. B. Lipkowitz, J. Am. Chem. Soc., 1986, 108, 8130; (c) P. W. R abideau and D. M. Wetzel, J. Org. Chem., 1982, 47, 3993; (d) K. B. Lipkowitz, P. W. Rabideau, D. J. Raber, L. E. H ardee, P. v. R. Schleyer, A . J. K os and R. A. K ahn, J. Org. Chem., 1982, 47, 1002; (e) P. W. R abideau, A cc. Chem. Res., 1978, 11, 141; (f) W. B. Smith and B. A. Shoulders, J. Phys. Chem., 1965, 69, 2022, and references cited therein.
15 I. D. Jenkins, J. Chem. Soc., Chem. Commun., 1994, 1227.
16 H. E. Zimmerman, R. J. Boettcher and W. Braig, J. A m. Chem. Soc., 1973, 95, 2155; H. E. Zimmerman and J. A. Pincock, J. A m. Chem. Soc., 1973, 95, 2957.

Paper 6/08122C
R eceived 2nd D ecember 1996
A ccepted 12th February 1997

